Novel data processing techniques for high-performance brain-computer interface

Ph.D. Defense
Po T. Wang
Biomedical Engineering
June 6th, 2014
What is a **brain-computer interface (BCI)**?

- BCI is a direct communication pathway between human brain and a computer device.
 - Reads signals from the brain
 - Decodes brain signals into intentions
 - Commands an output device
Overview of this presentation

1. Introduction and background
2. High-performance EEG-based BCI applications
 1. BCI Spelling device
 2. BCI Gait project
3. Conclusions and future works
Introduction & background
What BCI can do

Normal people can control their muscles by sending control signals down the spinal cord.

People with injuries to their brain or spinal cord may lose control of their own limbs and body.

A BCI can bypass the damaged nerves and directly control the limbs via a prosthesis or exoskeleton.

Image from: Cedars-Sanai
Communicate
Typing words
Motivation

• Spinal cord injury 350,000 (US), 25,000 new cases / year.*
 • Healthcare: $40.5 billion p.a.
 • Society: $306 billion p.a.

• Wheelchair dependence leads to:
 • Cardiovascular diseases
 • Diabetes
 • Osteoporosis
 • Muscular atrophy
 • Pressure ulcers

• Stroke >7 million (US), 800,000 new cases / year.**
 • Healthcare: $30 billion p.a.

• BCIs can potentially help them reduce reliance on caregivers, reduce medical costs

**Rogers et al, American Heart Association.
How BCI works
Training paradigms

• User-training:
 • Users are asked to learn how to change the amplitudes of their brain wave rhythms
 • 2-3 weeks, if not months training required
 • Usually not intuitive

• Computer-training:
 • Users are asked to perform intuitive mental imagery or attempted movement
 • Short training time (10-20 minutes) required
Control paradigms

Cue Based BCI (Synchronous BCI)
- **Cue** or stimulus
- **Response**
- **Output**
- Decoding

Self-Paced BCI (Asynchronous BCI)
- **Imagery**
- **Output**
- Decoding

THE QUICK
Do you want to type the letter
\[B \]?

THE QUICK B
Letter B entered.
Limitations of non-invasive EEG-based BCIs

1. Slow speed (< 1 bit/s)
2. Unintuitive operation (e.g. imagine foot and tongue movements to operate hand prosthesis)
3. Extensive training procedure (e.g. months)
4. Sensitive to artifacts

Potential solutions: Novel signal processing and pattern recognition techniques can
1. Improve BCI speed (> 3 bits/s)
2. Provide intuitive operation
3. Shorten the training time (15 minutes)
BCI Speller
P300 Speller

- Farwell and Donchin (1988)
- Based on the visual **oddball** event-related potential (ERP) paradigm.
- Oddball = Rare and wanted object.
- ERP is an EEG response to a stimulus.
 - Weak and difficult to discern on a single-trial basis
 - Obtained by averaging many identical trials
- P300 wave

Electroencephalography (EEG)

Sellers 2006
Essentially, the computer “probes” the human brain with this question:

Is the letter you want in this group?

The only signals the brain can respond are:

 Rows and Columns paradigm in Farwell & Donchin (1988), Sellers (2000), etc.
P300 Speller

A B C D E F
G H I J K L
M N O P Q R
S T U V W X
Y Z 1 2 3 4
5 6 7 8 9 SPACE
Frequencies of letters and others characters in English
Our BCI Speller

• Uses a combination of attention (P3a), oddball (P300/P3b), and visual search (N200/N2c) signals
• Does not expect any particular waveforms, completely data-driven
• Makes a decision based on only one trial of data
Experiment setup

1. Human subject
2. EEG cap, 8 chan. (~10 minutes)
3. Training procedure (6-7 minutes)
4. Computer builds a classifier
5. Online control
Equipment

- **EEG cap**: NeuroScan Quik-Cap with Ag/AgCl electrodes (Compumedics USA, Charlotte, NC)
- **EEG reference**: Ear clip with Ag/AgCl electrode (Compumedics USA)
MP150 DAQ

EEG amplifiers: EEG100C (Biopac Systems, Goleta, CA)
EEG data acquisition device (DAQ): MP150 (Biopac Systems)
Training procedure

• Comprises 10 mini-sessions
• In each 30-s mini-session, subject is asked to pay attention to one character from the following: A G < > Y D V 0 * K
• This character is called the “oddball” or the “target”
• 8-10 s pause between mini-sessions
• Hence 6-7-minute training time
Timing terminology for stimulations

3 different ITIs are offered:
- 400 ms (slow speed)
- 240 ms (medium speed)
- 160 ms (fast speed)

Stimulus duration (For our BCI-Speller, always 60% of the ITI)
Training procedure – data acquisition

• EEG sampled at 200 Hz from 8 channels
• 400 ms post-stimulus acquired as one ‘trial’. 400 ms = 80 samples
• First 100 ms discarded (visual transmission delay)

Trial duration = 400 ms
Inter-trial interval (ITI)

Trial duration = 400 ms

Slow speed
Inter-trial interval (ITI)

Trial duration remains the same. Trials overlap

Trial duration = 400 ms

240 ms (medium speed)
160 ms (fast speed)
Training procedure – data labeling

• A group of letters can either contain or not contain the oddball.
• Trials recorded when the oddball is present is labeled ODD, and EVEN otherwise. ODD and EVEN are classes.
Data dimension

8 channels

C3
Cz
C4
P3
Pz
P4
O1
O2

This is 1 trial of EEG data.

100 ms
300 ms

300 ms (60 samples)
Feature extraction and classification

Motivation

1. There are many redundant and irrelevant data in EEG.
2. We only need a subset of **features** from the EEG that can tell us whether or not **oddball** is presented to the subject.
3. Feature extraction is to extract only the relevant subset of EEG data that help us with the task of discriminating between **ODD** and **EVEN** classes.

** Trial Extraction **

n×480

** Reshape **

n×480

** Dimension Reduction **

n× d_{dr}

** Feature Extraction **

n× d_{fe}

** Classification **

EEG
1. Each trial of data (8 ch × 60 sp) is reshaped into a vector (1 × 480).

2. Trial vectors from each class form two matrices:
 1. Oddball matrix ($n_o \times 480$) containing only oddball trials
 2. Evenball matrix ($n_e \times 480$) containing only evenball trials

3. Feed both matrices into dimension reduction and then feature extraction algorithms
1. Many linear discriminant feature extraction techniques do not work well with small-sample-size problems (more dimensions than samples).

2. Even at fast speed, we only get 267 oddball samples, but we have 480 dimensions.

3. A more general, systematic way to reduce the dimension is required.

PCA
CPCA
PCA is a procedure that transforms data into linearly uncorrelated components (principal components), sorted by variances in descending order.

- Similar to:
 - Singular value decomposition of the data
 - Eigenvalue decomposition of the covariance

- You can only have up to \(n-1 \) or \(d \) principal components, whichever is smaller
 - \(n \) = number of trials
 - \(d \) = number of original dimensions
Dimension reduction (DR) by PCA Algorithm (SVD method)

X is data. $E[X] = 0$.

1. Calculate SVD: $X = U \Sigma V^T$. U is $(n \times n)$, S is $(n \times d)$, V is $(d \times d)$

2. PCA:
 - Retain only the $n-1$ highest singular values. Call this σ'.
 - Square and scale the singular values. $s = (\sigma')^2 / (n - 1)$, i.e. latents Retained vectors in $V = PC$ coefficients.

3. Dimension reduction:
 - Retain only latent values above the mean
 - Retained vectors = Φ, the retained PC coefficients

If we multiply X by Φ, we reduce the dimension of X.
Dimension reduction by Classwise PCA (CPCA)

Motivation

1. Ordinary PCA does not consider labels. It does not know whether data is for oddball.

2. Ordinary PCA may fail to separate data into the correct labels due to variances.

3. Problem can be alleviated by adding between-class information and treat each class separately

Dimension reduction (DR) by CPCA Algorithm

1. Perform PCA + DR on each class
 • Red cloud \rightarrow Red PC
 • Blue cloud \rightarrow Blue PC

2. Between-class PC coefficient (green line)

3. Each class has its own PC #1s and the green line

4. Orthonormalize separately:
 • Red and green lines
 • Blue and green lines

5. Result: Classwise PC coefficients
 • Red + green lines = PC coeff. for red subspace
 • Blue + green lines = PC coeff. for blue subspace
Feature extraction
Motivation

- CPCA retains 20-40 dimensions.
- Covariance estimates.
- Picking 1-3 highest latents (from CPCA) may be sub-optimal
- Need an algorithm that is specifically designed to separate classes
- Easier to visualize the data in 1-3 dimensions
- LDA and AIDA
Linear discriminant analysis (LDA) Algorithm

Assume Gaussian distribution for class data, maximize the ratio of between-class covariance to within-class covariance.

1. Calculate within-class covariance of class data X_c. (X_c is already reduced by CPCA.)
 \[
 \Sigma_w = \sum_c P_c \ X_c X_c^T
 \]
 P_c is the prior probability of C. $P_c = n_c/n$

2. Calculate between-class covariances
 \[
 \Sigma_b = \sum_c P_c (\mu_c - \mu)(\mu_c - \mu)^T
 \]

3. Find the matrix ω in \(\arg\max_{\omega} \frac{\omega^T \Sigma_b \omega}{\omega^T \Sigma_w \omega} \) by Generalized EVD:
 \[
 (\Sigma_w^{-1} \Sigma_b) \omega = \Lambda \omega
 \]

4. The normalized matrix $||\omega||$ is the **LDA coefficient**
 Note: The dimension of ω must be less than number of classes
Approximate information discriminant analysis (AIDA)

Algorithm

Based on mutual information between data and class variable.

1. Whitening transform:

\[
W = (\Sigma_w)^{-1/2} \\
S = W(\Sigma_w + \Sigma_b)W \\
S_C = W X_C X_C^T W
\]

2. Approximate \(\mu \) measure:

\[
Z = \log S - \sum_C P_C \log S_C
\]

3. Solve the EVD with only the \(m \) largest eigenvalues (\(m = \) output dimension)

\[
Zv = \lambda v
\]

4. The **AIDA coefficient** is:

\[
\|v^T W\|^T
\]

Ref: Das K, Nenadic Z (2008). Approximate information discriminant analysis: A computationally simple heteroscedastic feature extraction technique

Nenadic Z (2007). Information discriminant analysis: feature extraction with an information-theoretic objective
Classification by Bayes rule
Formula

Data are reduced to features of 1-3 dimensions and can be classified:
\[f_C = X \Phi_C T_{DA} \]

The posterior probability of class C given data feature f is:
\[P(C|f) = \frac{p(f|C) P_C}{p(f)} \]

- \(p(f) = \sum_C p(f|C)P_C \) is the total probability of f
- \(P_C \) is the prior prob. of C
- \(p(f|C) \) is the likelihood of f given C.

In BCI Speller, \(P_C = \left(\frac{1}{7}, \frac{6}{7} \right) \)
Classification by Bayes rule
Likelihood function

We use Gaussian (normal) distribution for the likelihood. It is essentially the Mahalanobis distance between f and μ_C.

$$p(f|C) = \frac{1}{\sqrt{(2\pi)^d|\Sigma|}} \exp\left((f - \mu_C)\Sigma^{-1}(f - \mu_C)^T \right)$$

d = 2
C = 0 or 1
Classification by Bayes rule
Quadratic and linear classifiers

Note the variance Σ_* in the likelihood function can either be the class covariance or the total covariance.

- For quadratic classifier,
 \[\Sigma_* = \Sigma_C \]

- For linear classifier,
 \[\Sigma_* = \sum_C P_C X_C X_C^T \]

 - Quadratic is more specific to each class (since classes have different covariances)
 - Linear is more robust (more trials to estimate covariance)
Classification
Classwise decision rule

• We get the posterior probabilities for each class, e.g. \(P(\text{Oddball} \mid f) \) and \(P(\text{Evenball} \mid f) \) from Bayes rule, \textbf{from each class subspace}.
 • Remember there are as many \(\Phi_C \) as there are classes, and each forms a subspace.
 • We need a way to make it compatible with ordinary Bayes classifier.

![Diagram of EEG classification process](image.png)
Classification
Classwise decision rule

The class with the highest posterior, anywhere, wins.

Example:

\[
\begin{align*}
P(\text{Odd}|f, s_o) &= 0.1, & P(\text{Even}|f, s_o) &= 0.9 \\
P(\text{Odd}|f, s_e) &= 0.6, & P(\text{Even}|f, s_e) &= 0.4
\end{align*}
\]

“Even” class wins

To consolidate the posteriors, normalize highest posterior from each class:

\[
\begin{align*}
P(\text{Odd}|f) &= \frac{0.6}{1.5} = 0.4, & P(\text{Even}|f) &= \frac{0.9}{1.5} = 0.6
\end{align*}
\]

\(s_o = \text{oddball subspace}\)
\(s_e = \text{evenball subspace}\)
Classification
Classwise decision rule

With the posterior probabilities calculated, we can decide on the class label of the EEG data:

\[
\text{EEG trial is } \begin{cases}
\text{Oddball} : & \mathbb{P}(\text{Odd}|f) > \mathbb{P}(\text{Even}|f) \\
\text{Evenball} : & \text{Otherwise}
\end{cases}
\]

Maximum a posteriori (MAP) rule

Recap:
1. One trial of data \(X = (8 \text{ channels} \times 60 \text{ sample points})\).
2. Feature extracted per class subspace: \(f_c = X\Phi_C T_{DA}\)
3. Posterior probabilities from classwise classification: \(P(C|f)\)
4. Decision from posteriors is made
Cross-validation (CV)

• Cross-validation is a technique to estimate the performance of the classifier on new data, without obtaining new data.

• We use stratified 10-fold cross-validation. In each CV iteration,
 1. 10% of trials from each class are removed from the training data
 2. The remaining 90% are used to build the classifier (green box)
 3. The classifier decodes those 10% trials into class labels
 4. The numbers of times it gets correct/wrong are tallied

Trial Extraction \(\rightarrow\) Reshape \(\rightarrow\) Dimension Reduction \(\rightarrow\) Feature Extraction \(\rightarrow\) Classification

\[\text{EEG} \rightarrow n \times 480 \rightarrow n \times 480 \rightarrow n \times d_{dr} \rightarrow n \times d_{fe} \rightarrow \text{Validation}\]
Cross-validation output

• The output of a cross-validation run is a confusion matrix:

\[
\begin{bmatrix}
P(C_1|C_1) & \cdots & P(C_m|C_1) \\
\vdots & \ddots & \vdots \\
P(C_1|C_m) & \cdots & P(C_m|C_m)
\end{bmatrix}
\]

where \(m\) is the total number of unique classes, and \(P(C_X|C_Y)\) is read as “probability of decoding a new trial from Class Y as Class X”.

• Diagonal terms are the probabilities of correct decoding.

• The total probability of correct decoding is the sum of the diagonal weighted by priors:

\[
P_{\text{correct}} = \sum_i P_{C_i} P(C_i|C_i)
\]
BCI-Speller experiment

Six subjects (2F, 22-56 y.o.) participated over 3 days. Each day consisted of training and online procedures for all 3 speeds (slow, medium, fast)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Gender</th>
<th>Age</th>
<th>Prior BCI experience</th>
<th>Native English speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>23</td>
<td>3 hours</td>
<td>Yes</td>
</tr>
<tr>
<td>B</td>
<td>M</td>
<td>40</td>
<td>10 hours</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>M</td>
<td>29</td>
<td>1 hour</td>
<td>Yes</td>
</tr>
<tr>
<td>D</td>
<td>M</td>
<td>22</td>
<td>Naïve</td>
<td>Yes</td>
</tr>
<tr>
<td>E</td>
<td>M</td>
<td>24</td>
<td>Naïve</td>
<td>Yes</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>56</td>
<td>10 hours</td>
<td>Yes</td>
</tr>
</tbody>
</table>
BCI-Speller experiment training procedure results

1. Training performance (cross-validation) ranged \(\sim 90\text{-}97\%\) (chance level = 85.7%)

2. Online task: They were then asked to correctly copy-spell:

 THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG*

 over 1-3 online sessions per speed on each day.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Interface speed (ITI, ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td>A</td>
<td>95.7±1.5%</td>
</tr>
<tr>
<td></td>
<td>97.0%</td>
</tr>
<tr>
<td>B</td>
<td>95.2±1.9%</td>
</tr>
<tr>
<td></td>
<td>97.4%</td>
</tr>
<tr>
<td>C</td>
<td>93.9±2.5%</td>
</tr>
<tr>
<td></td>
<td>96.6%</td>
</tr>
<tr>
<td>D</td>
<td>91.2±0.8%</td>
</tr>
<tr>
<td></td>
<td>92.1%</td>
</tr>
<tr>
<td>E</td>
<td>91.2±1.5%</td>
</tr>
<tr>
<td></td>
<td>92.3%</td>
</tr>
<tr>
<td>F</td>
<td>94.2±0.9%</td>
</tr>
<tr>
<td></td>
<td>95.3%</td>
</tr>
</tbody>
</table>

* marks personal best and ** overall best.
BCI Speller online operation

Video slowed down to 0.25x
BCI Speller online operation

Video slowed down to 0.25x
Video slowed down to 0.25x
Information transfer rate

Information transfer rate

\[ITR = \frac{N_c}{T} \log_2 |A| \]

- \(|A| = 42\) (number of different characters that can be chosen)
- \(N_c\) = number of characters correctly entered (44 for the quick brown fox...)
- \(T\) = time taken (seconds)

Useful when comparing between different speller designs (more/less characters on screen).

Note that \(T\) excludes the 3-s pause times.

<table>
<thead>
<tr>
<th>Input design</th>
<th>ITR range (bit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our BCI Speller</td>
<td>1.77 – 3.04</td>
</tr>
<tr>
<td>(4.7 s/char – 10.7 s/char)</td>
<td>(4 – 7 wpm)</td>
</tr>
<tr>
<td>Other BCI spellers</td>
<td>0.22 – 1.03</td>
</tr>
<tr>
<td></td>
<td>(0.5 – 3 wpm)</td>
</tr>
<tr>
<td>Typing by hand</td>
<td>9.01 – 12.9</td>
</tr>
<tr>
<td></td>
<td>(23 – 33 wpm)</td>
</tr>
</tbody>
</table>
BCI Gait

- BCI-Gait uses the changes in the sensorimotor rhythms (SMR) on the motor areas of the brain to control a walking device.
- **Self-paced** – Instead of stimulus-response, the user changes their own brain signals at their own pace to control the BCI in real time.
- Idling and walking **kinesthetic motor imageries (KMI)** – intuitive control strategy.
BCI Gait

Three stages of implementation

1. **BCI-Avatar**: Control a virtual reality walking simulation
2. **BCI-RoGO**: Control a robotic gait orthosis over a treadmill
3. **BCI-Parastep**: Control a functional electrical stimulation (FES)-based walking prosthesis
BCI Gait experiment protocols

<table>
<thead>
<tr>
<th>BCI-Avatar</th>
<th>BCI-RoGO</th>
<th>BCI-Parastep</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Training procedure</td>
<td>1. Training procedure</td>
<td>1. Training procedure</td>
</tr>
<tr>
<td>2. Build classifier</td>
<td>2. Build classifier</td>
<td>2. Build classifier</td>
</tr>
<tr>
<td>4. Online control of an avatar in a video game</td>
<td>4. Online control of a robotic gait orthosis</td>
<td>4. Online control of a FES-based walking prosthesis</td>
</tr>
</tbody>
</table>

Parastep® (Sigmedics Inc., Fairborn, OH)
Training procedure – protocol

10 x
1. Cue `Walk’ (30 s)
 Kinesthetic motor imagery (KMI) of walking
2. Cue `Idle’ (30 s)
 Imagine idling
(totals 10 minutes)
Subject demographics (BCI-Avatar only)

Table 6.1: List of participants with demographic data and prior BCI experience relevant to the task. SCI status scored according to American Spinal Injury Association (ASIA) Impairment Scale.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Gender</th>
<th>Age</th>
<th>BCI experience</th>
<th>SCI status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>M</td>
<td>40</td>
<td>~1 hr</td>
<td>-</td>
</tr>
<tr>
<td>A2</td>
<td>M</td>
<td>29</td>
<td>~1 hr</td>
<td>-</td>
</tr>
<tr>
<td>A3</td>
<td>F</td>
<td>23</td>
<td>~1 hr</td>
<td>-</td>
</tr>
<tr>
<td>A4</td>
<td>F</td>
<td>57</td>
<td>0 hr</td>
<td>-</td>
</tr>
<tr>
<td>A5</td>
<td>F</td>
<td>24</td>
<td>0 hr</td>
<td>-</td>
</tr>
<tr>
<td>A6</td>
<td>M</td>
<td>21</td>
<td>0 hr</td>
<td>-</td>
</tr>
<tr>
<td>A7</td>
<td>M</td>
<td>25</td>
<td>0 hr</td>
<td>-</td>
</tr>
<tr>
<td>A8</td>
<td>M</td>
<td>32</td>
<td>0 hr</td>
<td>-</td>
</tr>
<tr>
<td>S1</td>
<td>F</td>
<td>27</td>
<td>0 hr</td>
<td>T8 ASIA B, 11 yr post injury</td>
</tr>
<tr>
<td>S2</td>
<td>M</td>
<td>34</td>
<td>0 hr</td>
<td>T11, ASIA A, 8 yr. post injury</td>
</tr>
<tr>
<td>S3</td>
<td>M</td>
<td>46</td>
<td>0 hr</td>
<td>T1, ASIA B, 4 yr. post injury</td>
</tr>
<tr>
<td>S4</td>
<td>M</td>
<td>43</td>
<td>0 hr</td>
<td>C5, Syringomyelia, 14 yr. post onset</td>
</tr>
<tr>
<td>S5</td>
<td>M</td>
<td>59</td>
<td>0 hr</td>
<td>T1, ASIA B, 2 yr. post injury</td>
</tr>
<tr>
<td>S6</td>
<td>M</td>
<td>21</td>
<td>0 hr</td>
<td>T11, ASIA B, 1 yr. post injury</td>
</tr>
</tbody>
</table>
Equipment

• **EEG cap**: NeXus EEG Cap
 (Medi Factory, Heerlen, The Netherlands)

• **EEG reference**: Between AFz and FPz electrodes

• **EEG amplifiers**: NeXus-32
 (MindMedia, Roermond-Heren, The Netherlands)

• **EEG data acquisition device (DAQ)**: Same as EEG amplifiers

• **DAQ to receive cue signal**: MP150
 (Biopac Systems)

EEG: Sampled at 256 Hz
Cue: Sampled at 2000 Hz
NeXus EEG amplifiers and DAQ

$Z_{in} = 1 \, \Omega$, $v_{in} = \pm 150 \, \text{mV}$, ADC = 22-bit active shielding amplifiers

REF & SYNC
SYNC
micro-coax
Electrode Board Adapters
Timing and synchronization

Problem:
EEG and textual cues are not recorded together.
EEG amps have no aux ports.
How to label *Idle vs. Walk* segments on EEG?

Solution:
1. A **timing signal** from the computer
 - Walk cue = Audio tone
 - Idle cue = No audio
2. A **synchronization signal** between NeXus EEG and MP150
Problem:
EEG and textual cues are **not** recorded together.
How to label *Idle vs. Walk* segments on EEG?
Timing and synchronization

The first square pulses are aligned on both records
Timing and synchronization

When aligned, the timing signal is used to divide EEG into Idle and Walk segments.
1. EEG record is divided into 30-s Idle and 30-s Walk segments
2. The first 8 s in each segment are discarded
3. Remaining segments are further split into five 4-s small segments
4. A total of 50 Idle trials and 50 Walk trials are extracted
1. Each small segment is transformed to frequency domain using Fast Fourier Transform (FFT)

2. Power spectrum is integrated over 2-Hz bins, centered around 7, 9, ... 39 Hz.

3. Resulting in 17 sample points per channel.
Feature extraction, etc.

EEG

Segment Extraction

Sliced into 4-s smaller segments

Power Spectrum

\[\int 2\text{-Hz Bins} \]

Reshape

Dimension Reduction

Feature Extraction

Classification

Validation

Up to 64 ch.

53-54 ch. typ.

Up to 64 ch. and 17 bins

Same as BCI-Speller

\[\Phi_C \]

\[T_{DA} \]
Feature extraction filter in the 12-14 Hz bin for Subject A2 (29M). Higher magnitudes (deep blue/red) = more important. The CPCA technique generates one filter for each class. Left: Idle subspace, Right: Walk subspace. Training performance: 86.6% (50% chance).
Feature extraction filter in the 14-16 Hz bin for Subject S1 (27F, SCI, T8, ASIA B, 11 yr post)

Training performance: 94.5%
Relearning process?

The FE filters for Subject S3 (46M, SCI, T1, ASIA B, 4 yr post) evolved over the 5 days.
- No strong features in μ band in the first 3 days
- On the 4th day, foot and left hand representation areas “lit up”
- Training performance jumped from 62% to 92%

<table>
<thead>
<tr>
<th>Day</th>
<th>$P(\text{correct} \mid f^*)$</th>
<th>p-value</th>
<th>RC</th>
<th>Freq. band</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62.2 ± 1.8%</td>
<td>6.00×10^{-3}</td>
<td>53</td>
<td>4-40 Hz</td>
</tr>
<tr>
<td>2</td>
<td>62.0 ± 1.8%</td>
<td>1.05×10^{-2}</td>
<td>53</td>
<td>4-40 Hz</td>
</tr>
<tr>
<td>3</td>
<td>60.5 ± 2.0%</td>
<td>1.76×10^{-2}</td>
<td>53</td>
<td>6-40 Hz</td>
</tr>
<tr>
<td>4</td>
<td>91.6 ± 1.7%</td>
<td>1.60×10^{-19}</td>
<td>54</td>
<td>4-40 Hz</td>
</tr>
<tr>
<td>5</td>
<td>82.5 ± 1.6%</td>
<td>6.55×10^{-12}</td>
<td>25†</td>
<td>6-20 Hz</td>
</tr>
<tr>
<td>Avg.</td>
<td>71.8 ± 14.3%</td>
<td>6.82×10^{-3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BCI Gait: Online procedure flowchart

Every 500 ms, these steps are performed:

- **EEG** → **Store in Buffer** → **Extract 750-ms segment** → **Power Spectrum** → **Integration Bins (2 Hz) @ 7, 9, ... 39 Hz**

- **Reshape** → **Dimension Reduction and Feature Extraction Filter** → **“Classification”**

- **Averaging Window (1500-2000 ms)** → **Binary State Machine** → **Output Device**

- \(P(\text{Walk}|f) \) → \(P(\text{Walk}|f) \)

- **Idle** → **Walk**
1. Input: $P(W|f^*)$ averaged over 1.5-2.0 s
 Output: Idle or Walk, controls the output device
2. Two parameters:
 Idle Threshold (T_I)
 Walk Threshold (T_W)
3. Concentrated effort vs. maintenance of imagery
Calibration procedure: determine T_I and T_W

Steps

1. The BCI is put into online mode, with the following exceptions:
 - The output device is disconnected
 - The subject follows verbal cues from an experimenter

2. The experimenter instructs the subject to perform idling and walking KMI
 - The timing of each KMI is noted

3. $\bar{P}(W|f)$ from the calibration session is split into $\bar{P}(W|f \in I)$ (when instructed to idle) and $\bar{P}(W|f \in W)$ (when instructed to imagine walking).

4. Histograms are plotted.
 - Calibration procedure ~ 4 minutes
Calibration histograms

Posterior Probability Histograms for Online Calibration

\[P(W|f^* \in I) \]

\[P(W|f^* \in W) \]

Posteriors of Walking KMI Given Idling

Posteriors of Walking KMI Given Walking KMI
BCI Avatar: Online task

Control a player’s avatar

- Walk across the field as fast as possible
- Stop by 10 NPCs for 2 s each

Third person view of the avatar
(some subjects preferred first-person view)

Optical character recognition to interpret the player avatar’s location in the game world

Subjects are tasked to stop for 2 seconds within this zone
BCI Avatar: Online performance

Subj. S1 (Mar, 2010) SCI (T8, ASIA B, 11 yr post) (Live demo, Reeve-Irvine Research Center)

Subj. S4 (Sep, 2012) Chiari malformation (C5, 14 yr post)

Video @ 2x speed
BCI RoGO: Online performance

Video @ 4x speed

June, 2012
Able-bodied person

July, 2013
Person with SCI (T6, ASIA B)
Conclusions and future works
Review of objectives

• Goal: Create high-performance BCI using novel data processing techniques

• Specifically: Apply non-linear (piecewise linear) feature extraction, classification, and validation techniques to develop BCIs

• Result:

<table>
<thead>
<tr>
<th>Design goal</th>
<th>BCI-Speller</th>
<th>BCI-Gait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short training time</td>
<td>Yes (6-7 min)</td>
<td>Yes (10-15 min)</td>
</tr>
<tr>
<td>Intuitive control</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>High performance</td>
<td>Yes (4-5 s/chr)</td>
<td>Yes (high correlation)</td>
</tr>
<tr>
<td>Adaptive</td>
<td>(not tested)</td>
<td>Yes (AB, paraplegia, tetraplegia)</td>
</tr>
<tr>
<td>Versatile</td>
<td>(not pursued)</td>
<td>6+ output devices</td>
</tr>
</tbody>
</table>
BCI-Gait: Overground walking

- Training time:
 - 17 physiotherapy sessions
 - 7-11 BCI-Avatar training sessions

- Performance:
 - Offline: 100%
 - Online: $\rho > 0.9$
Electrocorticography (ECoG)

• EEG based system
 • EEG cap
 • Artifacts
 • Dries up
 • Bulky equipment
 • Limited bandwidth and resolution

• ECoG
 • Record underneath the dura
 • Better spatial resolution
 • Higher bandwidth
 • Long-lasting
 • Immune to artifacts
ECoG: Better bandwidth and SNR

High-\(\gamma\) band

EEG Bandwidth Limit

\(~35\) Hz
ECoG robotic arm control

- State decoder using the same BCI-Gait software
- Trained in 3 minutes
Future works

Fully-enclosed ECoG-based BCI implant
• Bio-compatible
• Long lasting
• Minimal infection risk
• Better recording resolution
• More accurate decoding

Long-term solution to restore functional independence for people with severe paralysis
Acknowledgements

Zoran Nenadic, D.Sc.
An H. Do, M.D.
Christine E. King
Andrew Schombs
Aggie A. F. Szymanska
Colin M. McCrimmon
Everardo Camacho Jr.

Former/rotation members
Ahmad Abiri
Sergey Osechinskiy

Rehabilitation Engineering
Philip Requejo, Ph.D.

Neurology
Susan J. Shaw, M.D.
David E. Millett, M.D.

Neurodiagnostic Technician
Angelica Nguyen
Christel Jean

Neurosurgery
Charles Y. Liu, M.D.

Facilities and equipment
Long Beach Veterans Affairs Medical Center
Robotic gait orthosis

Biology
Debra Mauzy-Melitz, Ph.D.

David J. Reinkensmeyer, Ph.D.

Neurology
Luis A. Chui, M.D. (ret.)
Steven C. Cramer, M.D.
Jack J. Lin, M.D.
Mona Sazgar, M.D.

Neurosurgery
Frank P. K. Hsu, M.D.

Physical Therapy
Cathy C. Y. Chou

Reeve-Irvine Research Center
Oswald Steward, Ph.D.
Kelli Sharp, D.P.T.