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Abstract

Objective: State-of-the-art invasive brain-machine interfaces (BMls) have shown
significant promise, but rely on external electronics and wired connections between
the brain and these external components. This configuration presents health risks
and limits practical use. These limitations can be addressed by designing a fully im-
plantable BMI similar to existing FDA-approved implantable devices. Here, a prototype
BMI system whose size and power consumption are comparable to those of fully im-
plantable medical devices was designed and implemented, and its performance was
tested at the benchtop and bedside.

Approach: A prototype of a fully implantable BMI system was designed and im-
plemented as a miniaturized embedded system. This benchtop analogue was tested
in its ability to acquire signals, train a decoder, perform online decoding, wirelessly
control external devices, and operate independently on battery. Furthermore, perfor-
mance metrics such as power consumption were benchmarked.



Main results: An analogue of a fully implantable BMI was fabricated with a minia-
turized form factor. A patient undergoing epilepsy surgery evaluation with an elec-
trocorticogram (ECoG) grid implanted over the primary motor cortex was recruited to
operate the system. Seven online runs were performed with an average binary state
decoding accuracy of 87.0% (lag optimized, or 85.0% at fixed latency). The system
was powered by a wirelessly rechargeable battery, consumed ~150 mW, and oper-
ated for >60 hours on a single battery cycle.

Significance: The BMI analogue achieved immediate and accurate decoding of
ECoG signals underlying hand movements. A wirelessly rechargeable battery and
other supporting functions allowed the system to function independently. In addition
to the small footprint and acceptable power and heat dissipation, these results suggest
that fully implantable BMI systems are feasible.

1 Introduction

Invasive brain-machine interfaces (BMIs) that are based on intracortical microelectrode arrays (MEAs) or
subdural electrocortigram (ECoG) have shown significant promise in restoring motor function in those with
severe paralysis due to neurological injuries. For example, such invasive BMIs have enabled accurate
brain-control of multi-degree-of-freedom (DOF) robotic arms [1—6] or functional electrical stimulation (FES)
devices [7, 8] after stroke or spinal cord injury. However, these systems typically require externally powered
amplifier systems and full-size computers to acquire and analyze the signals. As a result, the current
generation of implantable BMI systems are typically limited to stationary applications within an indoor or
lab setting. Furthermore, the intracortical microelectrode arrays have skull protruding components which
can potentially act as a conduit for infection, and may not be viewed by most people and potential users as
aesthetically pleasing or socially acceptable. These factors may make it difficult for such systems to find
safe and practical clinical application outside of the lab and may lead to poor adoption within the community.

Some researchers proposed to address these problems by wirelessly transmitting the brain signals to
a computer for analysis and processing [9—13]. However, such a solution has several drawbacks. For
example, the continuous wireless transmission of high-bandwidth neural data will most likely incur high
power consumption, leading to faster battery depletion and increased thermal injury risk. In addition, chronic
exposure of the brain and skull to wireless signals has unknown effects and may potentially carry unwanted
long term risks [14, 15]. In an attempt to avoid this issue, some researchers proposed to shift the site
of wireless transmission away from the head to other areas of the body [16—18]. However, both of these
approaches still rely on an external computer to decode brain signals, which in turn limits system operation
within the wireless range of the base station.

The authors propose that a fully independent and implantable BMI, whereby brain signal acquisition
and analysis are all performed within an invasively implanted system, may be one way to overcome the
aforementioned problems and achieve clinical practicality (see Fig. 1). Such a system would avoid the need
to have skull protruding components or reliance on external computing platforms. Consequently, such a
system would be conspicuous and therefore aesthetically and socially acceptable to potential users, family,
and other onlookers. Furthermore, a fully implantable BMI carries the convenience of being highly mobile
and always available to the user. Such a system is required to be implemented in a manner where the
hardware power and heat dissipation are low and its footprint is small enough to be safely implanted in a
person. In addition, the system must be able to accurately perform real-time brain signal decoding. Finally,
support mechanisms necessary for operation while isolated inside the human body would also need to be
included, such as battery-based power management, and wireless communication to external base station
and end-effectors. To the best of the author’s knowledge, such a fully implantable BMI system has not been
achieved.
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Figure 1: Envisioned fully implantable BMI system. This illustrates a hypothetical scenario where the system
is implanted in a patient with cervical spinal cord injury. ECoG electrodes are implanted over the area of
interest and signals are amplified, multiplexed, and digitized by the skull unit (SU) and passed to the chest
wall unit (CWU) for processing. The CWU will decode the ECoG signals and send wireless commands to
the end-effector. A base station can be used for wireless set up and configuration of the system, including
processes such as training data acquisition, offline training and calibration of the BMI decoder.

1.1 Concept Design of a Fully Implantable BMI

A fully implantable BMI system is envisioned to independently perform signal acquisition, offline and online
data analysis, and control end-effectors. The authors envision such a fully implantable BMI to be ECoG-
based due to ECoG’s proven long-term stability and safety [19, 20]. Such a BMI would consist of two major
subsystems: a skull unit (SU) and a chest-wall unit (CWU) (see Fig. 1). First, The SU houses the amplifier
array and multiplexor (MUX), is envisioned to be embedded in the user’s skull while connected to ECoG
electrodes, and will be responsible for acquiring, amplifying, serializing and digitizing the ECoG signals.
The multiplexed and digitized signals will be sent through a subcutaneous tunneling cable to the chest wall
unit (CWU), similar the approach used in deep brain stimulators. Note that signal multiplexing minimizes
the number of wires within this cable. The CWU houses all of the computing components and will be
responsible for storing and analyzing ECoG signals in real time as well as controlling end-effector systems
and communicating with an external base station or end-effectors. The external base station system is used
to wirelessly configure the entire system as needed. Note that constraining the SU to only perform signal
acquisition reduces its overall size and power consumption, thereby minimizing the risk of thermal injury to
the brain as well as the potential invasiveness of the prospective implant in the head. Also note that placing
the wireless transceiver (TRX) within the CWU spares the brain and skull from potential long term exposure
to radio frequency signals.



Base Station

Skull Unit Analogue

Chest Wall
Computer Unit Analogue -
Amplifier
I Array
Radio TRX ===
I' ECoG e
i Connectors Electrod
i Batt(.ary (32) ectrodes
End Effector [+====I Monitor
- Charging
1 q
Inductor  fe====I Coll
Programmer

Figure 2: Block diagram of the implantable BMI analogue. Dashed lines indicate wireless connections. Sim-
ilar to the envisioned fully implantable BMI system, the SU analogue acquires ECoG signals and passes
them to the CWU analogue. The CWU, composed of 2 microcontroller (MCU) cores and supporting com-
ponents, performs all necessary processing of the ECoG signals. Decoded states are wirelessly sent to
an end-effector. The base station is used to wirelessly configure the implantable BMI analogue. The BMI
system is powered by a wirelessly rechargeable battery. The development board connects all components
together and enables initial programming of the BMI via a USB port. A programmer (which can either be
a desktop computer or a dedicated programming device), is used to deploy the initial image of the BMI
program onto the MCU cores.

This paper describes the design of a prototype based on this envisioned BMI system that is capable
of decoding brain signals without sacrificing performance and while occupying a footprint sufficiently small
to allow for safe implantation. The BMI functions were validated at the bedside by testing its ability to
accurately decode human ECoG signals underlying hand movement in real time while the support functions
were benchmarked with a variety of benchtop tests.

2 Methods

2.1 Overview

To test the feasibility of the concept of a fully implantable BMI, a benchtop prototype of the system envi-
sioned in Fig. 1 was designed and fabricated (see Fig. 2). Similar to the envisioned system above, this
prototype comprises an analogue of the SU and CWU. A development board was also designed and fab-
ricated to dock and connect these two subsystems as well as facilitate programming and testing of the
integrated system. The system was programmed to perform the necessary BMI and supporting functions
(described in Section 2.3). Finally, the entire system was tested at the bedside in its ability to perform online
decoding of ECoG signals and its supporting functions were benchmarked.




2.2 Hardware Design
2.2.1 Skull Unit Analogue

The SU analogue comprises a 32-channel commercial bioamplifier integrated circuit (IC) with integrated
MUX and 16-bit analog-to-digital converter (ADC) (Intan Technology, Santa Monica, CA). The amplifier IC
was mounted on a custom printed circuit board (PCB) which connected the amplifier IC’s serial peripheral
interface (SPI) to the CWU analogue and its input channels to ECoG electrodes via an interface on the
development board.

2.2.2 Chest Wall Unit Analogue

To facilitate on-board processing, the CWU analogue was designed as a special purpose miniaturized
computer on a custom PCB. The CWU comprises low-power central processing units (two 48-MHz ARM
Cortex-M0+ microcontrollers; Microchip, Chandler, AZ), storage modules (512-MiB NAND flash memory;
Micron, Boise, ID), and memory (two 512-KiB FRAM; Cypress Semiconductor, San Jose, CA). The rationale
for having two separate microcontroller cores was to divide the computing burden necessary for real-time
BMI operation, as well as to provide a means for future self-programming of new software update deploy-
ments. Due to the isolated nature of a future fully implantable BMI, wireless communication between the
CWU analogue and base station or end-effectors must be established and implemented in a manner that
is compliant with the Federal Communications Commission designated Medical Device Radiocommunica-
tions Service (FCC MedRadio [21]) for implantable medical devices. This was facilitated by a LoRA radio
TRX (HOPE Microelectronics, Xili, Shenzhen, China), set to operate at 406 MHz using on-off-keying (OOK)
modulation. Also, since all implantable medical devices must be independently powered upon implantation,
the system’s power was provided by a 2500-mAh rechargeable 3.7-V lithium-polymer battery. A linear volt-
age regulator was used to maintain the system voltage at 3.3 V. Battery level status was measured by a
battery monitor IC (Texas Instruments, Dallas, TX). A wireless charging IC (Texas Instruments, Dallas, TX;
compliant with Qi wireless power transfer standards v1.2) with accompanying 47-1H induction coil (Wurth
Electronik, Waldenburg, Germany) enabled battery recharging by induction.

2.2.3 Development Board

In order to facilitate testing and programming of the SU and CWU analogues, a development board was
designed and fabricated to provide the necessary connections and interfaces for the two subsystems. More
specifically, the development board utilized a stackable board-to-board connector interface that provided
breakouts for critical connections for the SU and the CWU analogues. This included 32 industry standard
touch-proof jacks that were used to plug in ECoG connectors and route ECoG signals to the SU analogue.
Also, USB interfaces facilitated programming and debugging the microcontrollers from a desktop computer.
Note that this development board is not necessary in the future implantable system (Fig. 1).

2.2.4 Base Station

During the testing of the system, a desktop computer with a MedRadio band radio TRX played the role of a
base station in order to wirelessly control the implantable BMI analogue. The base station’s MedRadio TRX
was realized by interfacing a LoRA radio TRX with an ARM-based microcontroller. This wireless module
was connected to the desktop computer by a USB cable.

2.3 Software Design
2.3.1 BMI Software Overview

The overarching goal of the implantable BMI analogue’s software is to perform basic online decoding of brain
signals. More specifically, the system was designed to classify ECoG data into either move or idle states



in real time, similar to the state decoding scheme in existing BMI systems [22, 23]. To this end, the BMI
system’s main functions are to perform BMI training data collection procedures, generate an ECoG decoding
model, and subsequently utilize the ECoG decoding model in online BMI operations. Outside of these main
functions, the BMI software also has a number of supporting functions necessary for proper operation,
such as power management and wireless communication with external devices. This BMI software was
implemented as a custom C++ program, compiled on a desktop computer using Visual Studio (Microsoft
Corp, Redmond WA), and deployed onto the two microcontrollers of the CWU analogue (referred to as Core
1 and Core 2) via USB connections on the development board (note that the desktop computer plays the
role of the programmer in Fig. 2). Cores 1 and 2 were programmed to divide the computing burden in a
manner necessary to perform all of these functions in real time. Once the BMI software was deployed, the
BMI analogue was detached from the desktop computer and subsequently controlled wirelessly through
the base station computer. To this end, the base station software (running on the base station computer)
was designed to run in conjunction with the CWU software. The base station software enabled all of the
functions and settings of the BMI analogue to be controlled wirelessly.

2.3.2 Base Station Software

The base station software was designed to provide the experimenter with wireless access to all the settings
and functions of the BMI. It was written in Visual C# and implemented with a Windows Form graphical
user interface to facilitate ease of use. The base station software also provided a means to download and
visualize ECoG signals, upload data and settings, present training cues to subjects during training data
collection, and set the BMI to run in online mode. Ultimately, the base station and this its software are not
required to operate the CWU analogue after the system settings are appropriately configured and the BMI
decoder is trained (described further below).

2.3.3 Signal Acquisition and Data Management

ECoG signals from 32 electrodes were acquired at 500 Hz sample rate per channel after going through
a configurable 7.5-200 Hz analog band-pass filter. This rate was deemed adequate to acquire the ECoG
high-v band (80—-160 Hz), which is known to be most informative of the execution of motor tasks [24].
The ECoG data was temporarily stored inside the FRAM modules during acquisition. During training data
collection, the data was transferred to NAND flash for permanent storage. On the other hand, the data
was decoded in real time during online BMI operation. A file system was implemented to facilitate the
organization and future retrieval of all data stored on the NAND flash.

2.4 Assessment
2.4.1 BMI Decoder Training

The BMI decoder utilized a supervised learning approach to distinguish between idle and move states
based on ECoG signals. This required ECoG data underlying idle and move states to be collected. To
this end, upon command from the base station software, the BMI initiated training data collection. It then
wirelessly sent cues to the base station directing the base station software to display alternating idle and
move cues to the subject. Nominally, each idle or move epoch was 5-s long, and the process was repeated
for a total of 60 s. The BMI acquired ECoG data underlying each state and stored the data in the NAND
flash.

The BMI software then used the collected ECoG data to train the decoder. The average band-specific
powers were calculated in the a-to-5 band (8—-35 Hz) as well as in the high-v band (80-160 Hz), as follows.
This band combination was chosen as it was shown to yield the highest state decoding accuracy for elemen-
tary upper extremity movements [24]. The first 500 ms out of the 5-s data were discarded to accommodate
human reaction delay after a cue change. The subsequent 4.5-s ECoG time series were divided into 750-
ms non-overlapping segments, re-referenced to the common average reference (CAR), and passed through
a bank of software biquadratic filters in the 3 and high-y bands (filter design details and characteristics
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are provided in the supplementary material). The filtered signals were squared and averaged in time to
calculate a scalar value representing the band power in each channel and segment, i.e., E2# and E7 for
channel ¢ and segment s. These band power averages were downloaded for visualization. The channels
with high-contrast between idle and move states were empirically chosen for subsequent analysis. The
rationale for this channel selection is that: (1) not all ECoG electrodes placed over brain areas are relevant
and demonstrate robust modulation during movement; (2) training with all 32 channels would have required
much longer training time to acquire adequate number of samples for the increased dimension size; (3) a
longer training also increases analysis time, which may be impractical in a hospital testing environment.

The band powers ng and E7 , were concatenated and processed by classwise principal component
analysis (CPCA) [25] to reduce the dimension of input data. Specifically, the algorithm was set to retain prin-
cipal components accounting for at least 92% of variance in each class. The class separability was further
enhanced by running linear discriminant analysis (LDA) on the CPCA-transformed data. Mathematically,
f = Tipa®cpca(d), where d € R?¢ are the band powers, ®cpca is the piecewise linear CPCA transformation,
Tipa is the LDA transformation matrix, and f € R are 1-dimensional spatio-spectral features. Subsequently,
Bayes rule was used to calculate the posterior probabilities of each state given the observed feature. Due to
the piecewise nature of the feature extraction transformation, the following four posteriors were calculated:
Pr(I)f*), Pr(M|f*), Py (I)f*), and Py (M| f*), where f* is the observation, and P;(-|-) and Py (-|-) are the
posterior probabilities calculated in the idle and move state subspaces, respectively. The subspace with
the most convincing evidence (the highest posterior probability) was then selected as the winning subspace
and its posteriors P(I|f*) and P(M]|f*) were logged. Note that P(I|f*) = 1 — P(M|f*). This decoding
methodology has been successfully tested and validated in many real-time BMI operations [22, 23, 26, 27],
and was utilized in this study so that focus can be placed on design and validation of the device prototype.

The decoder training function was benchmarked to determine how the time necessary to train the
decoder scales with the number of channels. To test the worst-case scenario, the decoder was trained on
indistinguishable sets of training data. Specifically, the BMI analogue recorded 60-s of environmental noise
(all channels unplugged) and treated the data as if they were alternating idle and move epochs. Note that
this 60-s length matched the duration of training data. The time required to complete the decoder training
process was measured for 4, 8, 16, 24, and 32 selected channels.

2.4.2 Online BMI Operation

During online operation ngf and E7 ; were calculated for non-overlapping 750-ms ECoG signal windows
across all the selected channels. They were subsequently processed as described in Section 2.4.1 to
determine the winning posterior probability P(M|f*). To avoid uncertain state transitions and minimize the
subject’s mental workload, a binary state machine approach was used. Specifically, if Ty < P(M|f*) < T,
the system remained in the current state, where T; and Ty, (T > T;) are appropriately chosen state
transition thresholds. If P(M|f*) > Ty, the system remained in the move state or transitioned from the idle
to move state, as the case may be. On the other hand, if P(M|f*) < Ty, the system either remained in the
idle state or transitioned from the move to idle state. Note that this approach has been successfully used
in prior high-performance BMIs [22, 23, 26—28]. The BMI analogue system utilized a short dedicated time
window (nominally ~50 ms long) to wirelessly transmit the decoded state and the corresponding P(M|f*)
for the most recent 750-ms window to the base station software and end-effector. Note that the base station
acted as the end-effector in this study, since the feedback was provided as an on-screen icon that indicated
the decoded state.

Prior to online operation and performance assessment, a calibration procedure was used to determine
the values of 77 and T;. The BMI system was set to run in the online mode but with no control of end-
effectors. More specifically, the BMI system sent cues to the base station directing the base station software
to display alternating idle and move instructions to the subject. Each idle and move epoch was 10 s long,
and the calibration ran for 1—2 minutes. The resulting P(M|f*) were logged by the base station software.
Subsequently, P(M|f*) during idle and move cues were plotted on a histogram, and the experimenter
empirically determined suitable values for 77 and T7,.



2.4.3 Online BMI Performance Assessment

Ethical approval for testing of the implantable BMI analogue was obtained from the Institutional Review
Boards (IRB) of the University of California, Irvine and the Rancho Los Amigos National Rehabilitation Cen-
ter (RLANRC). Subjects undergoing epilepsy surgery evaluation with ECOG electrodes implanted over the
hand primary motor cortex (M1) were recruited. Subjects were asked to perform alternating epochs of repet-
itive hand grasp/release on the side contralateral to the ECoG electrodes as directed by the computerized
cues displayed on screen by the base station software. The decoding model was generated and calibrated
using methods described in Sections 2.4.1 and 2.4.2. Once the values of 77 and T, were found, the subject
operated the BMI in the online mode. Subjects were asked to follow visual cues to alternate between idling
and repetitive hand grasp/release while the BMI decoded their ECoG signals in real time (Section 2.4.2).
The decoded state was also displayed to the subjects as a form of feedback. This was repeated for ~five
8.5-s-long alternations of idle/move (nominally 85 s for each online run). Multiple runs were performed as
tolerated by the subjects or as time permitted. Since analgesic medications with significant sedating effects
are often given to this patient population, experimental compliance may be suboptimal. Therefore, a video
camera recorded subjects’ physical movements as the ground truth (acquired at 30 Hz, and synchronized
with the development board). The BMI performance was assessed by comparing the decoded states to the
ground truth and calculating the rate of correctly decoded states. In instances when the subject’s hand was
occluded at that time instance, the online accuracy calculation was not performed since the ground truth
could not be established for that time point. In addition, due the causal nature of the decoder, the online
BMI accuracy were also lag optimized. Namely, the above decoding accuracy calculations were repeated
by delaying the ground truth state by up to 2 s, and the set with the highest overall accuracy was reported
for each run. This lag optimization helps to account for various factors such as delay between ECoG signal
modulation and actual movements, uncertainties in determining exact start and stop times of movement, as
well as any potential processing delays. On the other hand, since the system nominally updates every 800
ms, the above performance measures were also calculated at a fixed latency of 800 ms.

2.4.4 Power Management and Other Benchmarks

The BMI analogue was benchmarked to determine the power consumption during its various functions,
including standby (running no operations other than periodically transmitting its status to the base station),
training data collection, decoder training, online decoding, and wireless data transfer (continuous wireless
data transmission to base station). Power consumption was derived from the average current measure-
ments on an ammeter connected in series with the battery while the BMI analogue performed each of the
above functions over a 2 minute period (nominal battery voltage was assumed to be 3.7 V for this calcula-
tion). All 32 channels were active during these benchmark tests.

For any implantable medical device, it is critical for battery state to be monitored so as to know when it is
necessary to recharge the system or when the battery is nearing failure. The CWU software was designed
to monitor the battery status for voltage and remaining capacity. The microcontroller cores obtained this
data from the battery monitor IC on the CWU analogue, and then wirelessly transmitted the data to the
base station. To characterize the system’s typical battery life, the battery was first charged to full capacity
(defined as when no current entered the battery) by means of a wireless power emitter (IDT Technologies,
using Qi protocol). Then, the system was set to run continuously in the online BMI mode as the battery
voltage was self-monitored by the CWU, until the system shut down due to battery depletion. The same
procedure was repeated when the system was in standby mode. Then, to characterize the typical recharge
profile, the wireless emitter was used to recharge the depleted battery until full while the CWU self-monitored
the battery voltage.

The wireless file transfer function was benchmarked for speed. The wireless transfer speed was deter-
mined by measuring the time required to successfully send a training data file (which consisted of ECoG
data underlying a single idle or move epoch) to the base station (includes time required for any error cor-
rection). This was performed for all data files from the training run above (n=12 files) and the entire process
was repeated for a total of 3 times (total of 36 file transfers).
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Figure 3: SU and CWU analogues mounted on the development board. CWU analogue comprises the
CWU board, antenna, charging coil, and battery. SU analogue comprises the amplifier/ADC chip. ECoG
electrodes are plugged into standard touchproof jacks and the USB port enables initial programming. Note
that a foot print for a micro-SD card adapter was included in the lower left hand corner, but the adapter was
not used in this study.

3 Results

3.1 Hardware and Software

The SU and CWU analogues were designed and fabricated as multilayer PCBs. Fig. 3 shows them mounted
on a 100 mm x 100 mm development board. The SU and CWU analogue PCBs occupy a 17-mm x 19-
mm and 33-mm x 33-mm footprint areas, respectively. The BMI software was successfully deployed onto
the CWU analogue MCU cores via USB programming ports. Once the BMI software was uploaded, the
system was detached from the computer and operated independently with power from a rechargeable
lithium-polymer battery. The base station software was successfully compiled as a standalone Windows
executable program with a graphical user interface. The base station software subsequently performed all
communication with the BMI analogue via the USB-controlled LoRA dongle over a 406 MHz band wireless
link.

3.2 Online BMI Performance

A patient (40 year old, male) undergoing epilepsy surgery evaluation with ECoG electrode implantation over
the left M1 area (see Fig. 4) was recruited and provided his informed consent to participate in this study.
The study was performed after all seizures necessary to identify the seizure foci for epilepsy surgery were
captured and all anti-epileptic medications were restarted. During this time, the subject was disconnected
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from the hospital monitoring system while awaiting explantation of ECoG electrodes. The subject remained
seizure free during the entire study time. The grid locations were identified by MRI-CT image fusion and
electrode clustering using methods described in [29]. Fig. 4 shows the axial top view of the electrodes
connected to the CWU analogue. Note that electrode placement was dictated by clinical needs.

During the training phase, the subject performed a repetitive right hand grasp/release task as per Sec-
tion 2.4.1. An example of the ECoG signals acquired can be seen in Fig. 5. The signals were visually
inspected by the experimenter. A total of 7 salient channels were empirically selected as they were deemed
to have the highest feature contrast between idle and move states (circled in red on Fig. 4). Subsequently,
these channels were used for decoding model generation and calibration. Due to the subject’s fatigue and
somnolence from medications, the calibration and online testing was done 2 days after the training data ac-
quisition and decoding database generation. Since P(M|f*) during idle and move from the calibration run
were highly separated, T; and T, were set to 5% and 95%, respectively. The subject was able to perform
a total of 8 online runs. The video files were reviewed to determine the ground truth. The percentage of
correctly decoded states (FPcorect) across 7 runs averaged 87.0% in the lag optimized approach, and 85.0%
in the fixed latency approach. The performance metrics for all runs are shown in Table 1. A representative
example of the decoding timeline from an online run is shown in Fig. 6. Run #2 was discarded from analysis
due to camera obstruction, preventing the recovery of the ground truth. For Runs #1 and #6, the camera’s
view of the subject’s hand was obstructed temporarily, leading to three and one time decoded states being
excluded from the online performance calculation, respectively. Since the BMI was manually terminated at
the end of each online run, run durations were not exactly identical. In Run #1, the BMI experiment was
discontinued earlier than expected while in Runs #5 and #6, the BMI system was allowed to operate for
longer than the typical run duration.

Table 1: Online performance from all runs. Pgorect IS the overall decoding accuracy. P(I]I) is defined
as the percentage of correctly decoded idle states and P(M|M) is defined as the percentage of correctly
decoded move states. Time indicates how long each experimental run lasted. Performances are reported
at optimized latencies (lags) and at the 800-ms nominal update rate.

Run Time Lag Optimized Lag Fixed to 800 ms
(s) Poorwest P(I|I) P(M|M) Lag(ms) Feorect P(I|I) P(M|M)
1 75.7 85.5% 92.6% 72.1% 869 83.9% 92.0% 78.4%
3 86.1 81.7% 87.1% 74.4% 636 80.0% 83.9% 76.9%
4 88.0 84.7% 93.8% 66.7% 896 83.3% 93.5% 74.3%
5 104.3 82.6% 100.0% 64.7% 430 77.9% 94.7% 64.6%
6 1242 89.6% 91.2% 87.2% 825 91.4% 91.2% 91.5%
7 86.6 90.5%  90.9% 88.1% 451 84.7% 80.0% 89.2%
8 87.4 93.1% 100.0% 84.1% 397 89.9% 90.6% 89.2%
Average 93.2 87.0% 93.6% 77.6% 655 85.0% 89.5% 81.3%

3.3 Computing and Power Management Benchmarks

A number of a computing benchmarks were measured during the process of testing the BMI system. The
time that it took for the CWU analogue to calculate P(M|f*) for any 750-ms window was ~300 ms. A more
detailed breakdown of the online benchmark by processes and Cores is provided in the supplementary
data. For the decoder training benchmark, it was found that the time to complete the decoder training was
directly proportional to number of channels (R?=0.964, see Fig. A1). The wireless transfer speed averaged
975.5+31.0 bytes/s across 36 file transfers. Anecdotally, it was observed that interference to line-of-sight
between the BMI and the base station could lead to reduction in the transfer speed.
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Figure 4: Subject’s ECoG grid placements. The left central convexity grid was connected to the CWU
analogue. Electrodes containing salient features of the hand grasp movement are circled in red. In addition,
two electrodes on the right interhemispheric (IH) grid were used as signal reference and circuit ground.
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Figure 5: Representative signals from electrode #50 on the left central grid (Fig. 4) during training data col-
lection. The training run began with a 5-s idle epoch and alternated with 5-s move epochs where the sub-
ject performed repetitive hand grasp/release throughout the epoch. White/green shades denote idle/move
epochs, as defined by system generated cues during the training data collection process.
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Figure 6: Timeline of online Run #8. The BMI decoded the ECoG signals into idle or move state. Black
trace: Posterior probabilities P(M|f*). Dashed lines: State machine transition thresholds, 77 and T),.
Decoded: BMI states from the decoder. Red = Idle. Green = Move. Actual: Ground truth states based on
video analysis. Gaps between red and green lines represent uncertainties due to the subject momentarily
placing his arm outside of the camera’s field of view. Note that since these gaps did not coincide with the
time point of any BMI analysis window, no decoded windows were excluded from the decoding accuracy
analysis. Cue: Instructional visual cue shown to the subject.
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Power consumption of the BMI analogue as it was performing various functions is shown in Table 2.
When set to run in the online decoding mode, the BMI could operate continuously for over 60 hours on a
single battery charge (Fig. 7). The system was able to reliably operate over 3.2—4.2 V supply-voltage range.
It required ~18 hours to recharge the battery from depletion to full capacity (see Fig. A2).

Table 2: Average current and power consumption of the BMI analogue during various BMI functions. Power
consumption is derived using 3.7 V as the nominal battery voltage.

Task Current Power
Standby 37.5mA 138.8 mW
Training Data Collection 421 mA 155.8 mW
Decoder Training 414 mA 153.2 mW
Online Decoding Operation 40.6 mA 150.2 mW
Wireless File Transfer 43.8 mA 162.1 mW

4 Discussion

4.1 Primary Findings

In this study, an benchtop analogue of a fully independent and implantable BMI system was successfully
implemented, tested on the benchtop and at bedside, and achieved a high level of online performance.
This represents an important step in demonstrating that fully implantable BMI systems are feasible and may
overcome the issues that prevent clinical translation of current-generation invasive BMI systems. The au-
thor’s prior work in [30] demonstrated that BMIs could be reduced into hand held size (13x9x3 cm?), but the
system only had the capability of operating on 4 EEG channels and was not designed for implantability due
to excessive size and power consumption. The current work advances this significantly further by achieving
a miniaturized form factor with a size comparable to existing implantable medical devices, e.g., deep brain
stimulators or responsive neural stimulators, while also being mindful of power and heat dissipation. This
implies that a future implantable BMI can include all necessary components of a miniaturized form factor,
thereby eliminating the need for any skull-protruding electronics, bulky external amplifiers, or computers.
The ability to execute all data analysis steps and online decoding eliminates the need for fully implantable
BMIs that rely on power-hungry wireless tethering to an external system for signal processing.

This miniaturization was achieved without sacrificing performance as the system’s online decoding ac-
curacy is comparable to or surpasses that of conventional desktop-based binary classifiers [22, 30, 31].
Notably, the acquired signals demonstrate the expected ECoG features underlying motor behavior, includ-
ing « and 8 band desynchronization [32], and high-+y synchronization [33—36]. Furthermore, accurate online
decoding was achieved with only a short duration of training data and without any significant user practice.
Although some brief false transitions were observed (see Fig. 6), such noisy state transitions may be min-
imized in the future by averaging P(M|f*) across multiple decoding windows, albeit with slower response.
The subject’s performance also increased with each successive online run, indicating that if time permitted,
additional user training would have likely resulted in even higher online performance. Finally, the fully im-
plantable BMI analogue’s ability to operate independently on battery power, be recharged wirelessly, and
wirelessly communicate with the base station and end-effectors indicates that a future BMI device can be
successfully implanted and isolated inside of a human body where no direct access is possible. The fea-
tures that make the BMI analogue system potentially translatable into a practical fully implantable device
will be discussed in further detail.

The current BMI analogue system can act as a basis for future implantable BMI systems. More specifi-
cally, the current system can readily undergo additional translational steps to make it into a fully implantable
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form that complies with regulatory requirements. First, the SU analogue can be integrated with ECoG elec-
trodes, and both analogues can be placed within hermetically-sealed titanium enclosures. Given that they
have a size comparable to modern-day implants and given the known biocompatibility of titanium, these sub-
systems can be readily implanted in humans. The tunneling cable that connects the SU and CWU involves
a surgical process similar to what is employed in deep-brain stimulator implantation and hence should not
pose any additional problems. The foot print of these subsystems can potentially be reduced even further
by utilizing smaller versions of each discrete component, e.g. bare dies (as in [37]) or even integrating them
into an ASIC form. Second, although the base station is a desktop computer in the current study, this can
eventually be replaced by a handheld device to facilitate better mobility and ease-of-use for future users and
clinicians. It should also be noted that the base station does not need to be constantly present once all the
BMI settings are configured. Third, while the analogue system’s 406 MHz band radio already complies with
the FCC MedRadio standard, additional protocols for co-existance with other implantable wireless devices
(as in [38, 39]) and cybersecurity (e.g. encryption/authentication and device specific addressing) can be
implemented in the future to satisfy FDA requirements. Finally, upon integration into titanium enclosures, it
can be estimated that the system’s power consumption of ~150 mW will fall within an acceptable and safe
range of heat dissipation within the human body [40].

The BMI analogue system’s battery can provide over 2 days of constant online BMI use before requiring
a recharge via wireless induction. Although it nominally requires up to 18 hrs to completely recharge the
battery (Fig. A2), it is reasonable to charge the battery for ~ 6-8 hrs every 48 hrs to maintain continuous
operation. More specifically, it can be seen in Fig. 7 that 48 hrs of operation will discharge the battery to
between 3.7-3.8 V. Subsequently, 8 hrs of charging from this voltage level will bring the battery back up to
>4.15 V (Fig. A2). A future scenario can be envisioned where the BMI user undergoes wireless charging
as they sleep (typically 6-8 hrs for average adult). With typical batteries having as many as 1000 recharge
cycles, the current design could last up to 6—7 years before requiring replacement. The implementation
of additional power saving features in software can minimize power consumption. Namely, this includes
shutting down components or placing them into sleep mode when not in use to further reduce power con-
sumption. A custom ASIC implementation can also help reduce power consumption by minimizing the
number of redundant or unnecessary subcomponents from the ICs currently used in the system. Finally,
other process improvements such as implementing direct memory access (DMA) or even simplifying the
decoding algorithm can also help optimize power consumption. Such measures are important to mini-
mize the need for battery replacement surgeries and their associated costs and complication risk. Power
consumption optimization can also help to ultimately reduce the battery and implant size.

4.2 Limitations

The process of generating a decoding model lengthens by ~0.7 min with an each additional channels
involved, and can take excessively long if a large number of channels are required in the future. This may
lead to faster battery depletion, especially if more training data is collected. However, the decoding model
may not need to be generated frequently. More specifically, it is notable that the training data was collected
on a separate day from when the online runs were performed, yet it was still able to yield a high accuracy
online performance. Although not explicitly tested here, this suggests that ECoG signals may be stable
enough such that a decoding model can be used over extended periods of time.

The fully implantable BMI analogue system has only been programmed to perform binary-state clas-
sification. Although this is just a single decoding scheme, it can be readily applied to high-impact clinical
applications. This includes BMIs to control gait prostheses in paraplegic SCI patients [26], or for virtual
keyboard control in patients with locked-in syndrome [41], or for control of prostheses for hand grasp and
release for stroke patients with chronic distal upper extremity weakness [6]. Furthermore, the BMI software
can be altered to decode more classes or perform other decoding schemes, such as estimating upper or
lower extremity movement trajectories from ECoG signals [33, 42—44]. As an implant, any such change
or update to the BMI software would require the ability to perform wireless reprogramming. Although this
feature was not explicitly demonstrated here, the fully implantable BMI analogue hardware has the capacity
to accommodate this feature. Specifically, both microcontroller cores can be programmed with a function
that would allow them to act as an in-system programmer (ISP) for each other. Subsequently, any new
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compiled image for the microcontroller cores can be wirelessly transmitted to the CWU and stored in the
NAND flash storage. The cores would take turns deploying the new image onto one another to complete the
update. It should be noted that adding more classes may require more training data collection and involve
longer decoder training. Although not explicitly benchmarked, it is expected that faster processors may be
required to maintain real time processing beyond a certain number of classes. Similarly, the addition of
another memory module can help enable the implementation of a sliding window during decoding for faster
response time.

Although an extended stability test was not explicitly performed in this study, it can be seen that the
system and its software did not “crash” for the entire duration of the battery depletion test (Fig. 7).

4.3 Future Directions

Future work will involve the translation into a fully implantable form. In addition to integration of all elec-
tronic components into hermetically sealed enclosures and software improvements discussed above, the
system will be properly sterilized and packaged followed by industrial standard testing (i.e. helium leak
testing, sterility validation, animal model testing, etc.) to demonstrate safety and satisfy regulatory require-
ments prior to human implantation. Also, given that sensation is critical for all motor functions, electrical
stimulators will be added in future iterations to deliver direct cortical stimulation to the sensory cortex for
artificial sensory feedback. Artificial sensation can potentially help further improve the user’s performance
at operating the system and make the system more compelling to potential users and clinicians.

5 Conclusion

An analogue of a fully implantable BMI system with a small form factor was successfully designed, fabricated
and tested both at the benchtop and at the bedside. This system is capable of performing all BMI functions
without reliance on an external computer. The system can operate independently within an isolated envi-
ronment given a wirelessly rechargeable battery and wireless communication capability with a base station
and end-effectors. Despite these design constraints, decoding performance was not sacrificed and the
system’s power and heat dissipation were within safe and acceptable ranges. These findings suggest that
the fully implantable and independent BMI systems are feasible. Future work will include translation of the
analogue device into an implantable form and adding features such as electrical stimulation capability for
artificial sensation.
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Supplementary Material

S1. Biquadratic Filter Characteristics

For each channel, two biquad filters were cascaded to achieve an equivalent 4th order filter. Concerns
with numerical stability led to the choice of cascading and transposed Direct Form Il in the implementation.
Specifically, given the transfer function

So(bo + blz_l + ng_Q)
14+a1271 +agz2

H(z) =

each filter was implemented as:
y = bosox + 271

27t =bysox — a1y + 272

272 = basox — asy

where z is the input time-domain signal, and y is the filtered signal, to achieve unity gain in the passband.
Since this is a bandpass filter, [by, b1, b2] are always [1,0, —1] regardless of corner frequencies. The other
coefficients are listed in the following table.

Table A1: Cascaded biquadratic bandpass filter parameters.

Coef. «f band (8-25 Hz) High-+ band (80—160 Hz)

First filter a -1.903164393707757  -0.6728460673121781
in cascade  as 0.9155541480081799  0.512749321199967
S0 0.09941923239026536 0.3812136984383465
Second filter a, -1.738070250524034  0.4814572440759797
in cascade  ay 0.8074498208818614  0.4921013365590823
50 0.09941923239026536 0.3812136984383465
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S2. Online Decoding Timing, Complexity, and Memory Usage

The signal processing chain from acquisition to feedback (as described in Section 2.4.2) were bench-
marked. These values were averaged over ~100 online decoding decisions in laboratory conditions. 1
KB = 1000 bytes. # = “number of”.

1. (Core 1)

2. (Core 2)

3. (Core 2)

4. (Core 1)

Process:
Time:
Memory:

Process:

Time:
Complexity:
Memory:

Process:

Time:
Complexity:
Memory:

Process:
Time:

Acquiring 750-ms ECoG signals from 32 channels.
750-751 ms.
1 KB per channel per second

Bandpass filter and power calculations on the selected channels.
~14 ms for each channel, 586.7 ms for 32 channels

O(n), n = number of selected channels

24 bytes x n x #bands x #filters in cascade

Feature extraction, Bayesian classification, binary state machine, etc.
3.20 ms for 2 classes

O(c?) to O(c*) depending on LDA dimensions (c = number of classes)
4 x #ibands x n x ¢ + 8c? bytes, using pooled variance

Wireless transmission to the feedback device.
~50-150 ms, durations above 50 ms may sometimes occur if noise results in a

need to wait for acknowledgment or retransmission attempts

Note that steps 1 and 4 were performed by the first microcontroller (core), and steps 2 and 3 on the second
core. Core #2 performed these computations while Core #1 acquired the next 750-ms segment from the
amplifier. Even though Core #2 completed the decoding processes with ~200 ms to spare, wireless trans-
mission of the result was placed on hold to avoid interfering with signal acquisition. Nominal time between
online segments is 800 ms (time for steps 4 and 1) in the best case scenario. An environment with high
radio frequency (RF) noise, such as a hospital, can increase the time in step 4.
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S3. Other Benchmarks
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Figure A1: Time taken to train the decoder on a set of 60-s-long noise inputted as training data, representing
the upper bound of the time requirement. Addition of each channel added ~0.7 minutes to the training time.
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Figure A2: Measurements during recharging the battery. Wireless charging receiver paused power delivery
after 10 h due to a built-in safety feature for the commercial wireless inductor.
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