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Abstract— A fully implantable brain-computer interface
(BCI) can be a practical tool to restore independence to
those affected by spinal cord injury. We envision that such
a BCI system will invasively acquire brain signals (e.g. elec-
trocorticogram) and translate them into control commands for
external prostheses. The feasibility of such a system was tested
by implementing its benchtop analogue, centered around a
commercial, ultra-low power (ULP) digital signal processor
(DSP, TMS320C5517, Texas Instruments). A suite of signal
processing and BCI algorithms, including (de)multiplexing, Fast
Fourier Transform, power spectral density, principal compo-
nent analysis, linear discriminant analysis, Bayes rule, and finite
state machine was implemented and tested in the DSP. The
system’s signal acquisition fidelity was tested and characterized
by acquiring harmonic signals from a function generator. In
addition, the BCI decoding performance was tested, first with
signals from a function generator, and subsequently using
human electroencephalogram (EEG) during eyes opening and
closing task. On average, the system spent 322 ms to process
and analyze 2 s of data. Crosstalk (<-65 dB) and harmonic
distortion (∼1%) were minimal. Timing jitter averaged 49 µs
per 1000 ms. The online BCI decoding accuracies were 100%
for both function generator and EEG data. These results show
that a complex BCI algorithm can be executed on an ULP
DSP without compromising performance. This suggests that
the proposed hardware platform may be used as a basis for
future, fully implantable BCI systems.

I. INTRODUCTION

Every year, between 250,000 and 500,000 people in the
world suffer a spinal cord injury (SCI), which can lead
to permanent disability [1]. Paralysis due to SCI decreases
quality of life for the affected individuals and their family
members and can lead to medical complications such as
cardiovascular problems and pressure ulcers. In the US alone,
the primary and secondary health care costs associated with
SCI are estimated to be ∼$50 billion per year [2]. Thus,
practical solutions for restoring motor functions after SCI are
desperately needed. Brain-computer interfaces (BCI) can be
used to bypass the damaged spinal cord and facilitate direct
brain-control of prosthetic devices such as exoskeletons
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or functional electrical stimulation systems. Recent studies
have shown that using invasively acquired electrocorticogram
(ECoG) signals is promising for BCI application [3], [4].
However, such ECoG-based BCIs utilize large, power-hungry
electronics and external computers, which limit their use
to lab settings only. Some researchers proposed to address
this problem by developing intracranial implants capable of
acquiring brain signals and wirelessly transmitting them to
an external computer for processing [5], [6]. However, this
approach does not fundamentally circumvent the reliance on
an external computer. Furthermore, such bulky systems are
unlikely to gain a widespread adoption by the target patient
population. Therefore, a practical low power BCI that is
highly portable, always available, and aesthetically pleasing
must be developed.

We hypothesize that all of these criteria can be met with a
fully implantable ECoG-based BCI (Fig. 1A). This system is
envisioned to include a skull unit, which is used to amplify
and serialize up to 64-channel electrocorticogram (ECoG)
signals into a single channel. These signals are routed to
a chest wall unit (CWU), which digitizes, de-multiplexes,
and processes the signals to decode the underlying intentions
(Fig. 1B). The digitizer is designed to capture up to the
high-γ band (80–160 Hz), which is known to modulate
with movements [3], [4]. The CWU also includes a wire-
less transceiver to facilitate communication with external
prosthetic devices and diagnostic units. The entire system is
expected to be powered by a battery with wireless recharging
capability. The fully implantable nature of this system will
make it highly portable and always available. Furthermore,
the absence of any transcutaneous electronic components
greatly mitigates the infection risk and makes the system
aesthetically acceptable to potential recipients. In this study,
we developed a benchtop analogue of this proposed fully
implantable BCI system and validated its functions with
artificial signals as well as with human electroencephalogram
(EEG) signals.

II. METHODS

To mimic the function of a fully implantable BCI system,
a custom amplifier array and multiplexer (mux) were used
as an analogue to the skull unit, and an ultra-low power
(ULP) digital signal processor (DSP) development board was
used to simulate the CWU. The DSP was programmed with
a custom BCI algorithm, and this system’s functions were
tested using artificial and human EEG signals. The system



Fig. 1. (A) Design overview and (B) schematic of the future fully implantable BCI system. (C) Design of the benchtop analogue tested in the present
study. Frequency values indicate bandwidth.

performance was used to determine this platform can be used
as a basis for a fully implantable BCI system.

A. Design

A commercially available development board (EVM5517,
Spectrum Digital Inc, Stafford, TX) for the TMS320C5517
(“C5517”, Texas Instruments, Dallas, TX) DSP was con-
nected to a 4-channel mux (MAX4618, Maxim Integrated,
San Jose, CA). The mux was then connected to either a
function generator or a custom EEG amplifier for testing
(described further below). This setup was implemented on
prototyping boards.

Consistent with our previous EEG-based BCI systems
[7], [8], the basic function of the proposed system is to
be able to decode a user’s brain signals into one of two
states. To this end, the BCI was designed to operate in
two modes. First, a training mode involves collecting brain
signals while cuing the user to perform idling or moving
tasks. Then, in the online mode, the BCI predicts the state
from brain signals acquired in real time. Common to both
modes of operation are the following signal acquisition and
processing procedures. Digitized 10-bit signals from the
C5517’s analog-to-digital-converter (ADC) were stored in a
pair of 16-bit unsigned integer arrays with additional meta-
data embedded in the unused bits (Fig. 2). These arrays
were stored in the DSP’s internal random access memory
(RAM), allowing the BCI to run at high speed. They were
also written into an SD card (serving as an analogue for an
embedded MMC storage module in a future fully implantable
BCI system), which facilitates the system’s ability to perform
long-term ECoG recordings. Signals were subsequently de-
multiplexed and converted to power spectral densities (PSD)
using Fast Fourier Transform (FFT). The PSD were then
binned into the following EEG bands: α (8–12 Hz), low-β
(12–20 Hz), high-β (20–30 Hz), and low-γ (30–40 Hz).

During training, 40-s of signals underlying the state A
and 40-s underlying state B were collected to train the
BCI decoder. Specifically, the binned PSD underlying the
two states were used to derive dimensionality reduction
transformation consisting of a combination of principal com-
ponent analysis (PCA, set to retain 99.7% of variances)
and linear discriminant analysis (LDA). This resulted in a
dimensionality reduction from 16 D (4 bins × 4 channels)
to 1 D. The class-specific means and variances of these 1 D
features were then used to obtain the posterior probability of
each class by utilizing the Bayes rule with unpooled Gaussian
likelihoods and equal priors. Similar to out prior EEG-based
BCIs [7], [8], the current BCI’s online mode was modeled
as a binary state machine with the state transition parameters
established through a calibration procedure. To this end, 20-s
long signal samples underlying each state were acquired and
processed in the frequency domain in the same manner as
the training data above. Upon transforming these calibration
samples into 1 D features, the Bayes rule was applied to
obtain the posterior probability of state B given feature f ,
P (B|f). Note that P (A|f) = 1 − P (B|f). For each state,
the average of P (B|f) was calculated and used as the state
machine transition threshold, i.e. TA = mean{P (B|f ∈ A)}
and TB = mean{P (B|f ∈ B)}.

In the online mode, 2-s long data windows were processed
in the same manner as the calibration data. The posterior
probability, P (B|f), was calculated using the Bayes rule
and compared to the state transition thresholds in real time.
If P (B|f) ≤ TA, the state machine either remains in state
A or switches from state B to A. If P (B|f) ≥ TB , the
state machine either remains in state B or switches from
state A to B. If TA < P (B|f) < TB , the BCI defaults
to the current state. Note that these state transition rules
allow the state to be maintained without having to keep the
posterior probability constantly above or below the respective



threshold. In this study, BCI outputs were streamed to the
debug console on a desktop computer in order to monitor the
BCI system’s performance. The details of these operations
are illustrated in Fig. 3.

Fig. 2. Data storage structure for one sample. The first 10 bits store the
signal. The next 2 bits store the mux state (which channel). The last 20 bits
store the differential elapsed time of each sample in units of 1/50 ms and
can also be used to store other meta-data.

Fig. 3. Software design block diagram.

B. Function Generator Test

The BCI system was first tested using artificial signals to
ascertain its ability to reproduce and decode the acquired
signals. To this end, a function generator was used to gen-
erate 100 mVpp sine wave signals with various frequencies
at 400 mV offset. The signals were acquired through one
of the mux input channel, while the remaining 3 channels
were grounded. Signals were recorded at 4000 Hz and
subsequently exported via the SD card for analysis. Time
domain plots and power spectrum were used to assess signal
acquisition fidelity, cross-talk specification, total harmonic
distortion (THD) and the correct encoding of mux and timing
meta-data.

Next, BCI operation was also tested by using a sine
wave to simulate the brain signals underlying state A and a
square wave of the same frequency to simulate brain signals
underlying state B. These signals were generated during the
training mode, and a BCI decoding model was generated
as described above. During the online mode test, alternating
20-s long periods of sine and square waves were sent to
the system while the BCI decoded the signals in real time.
This was repeated for a total of 200 seconds. The number
of correctly decoded samples as well as the total number
of decoded samples were recorded to ascertain the system’s
performance.

Both the signal fidelity and BCI tests were performed at
13, 113, and 223 Hz.

C. Human EEG Test

A custom-made 4-channel bio-amplifier [9] was connected
to the 4 channels on the mux. Note that signal fidelity was
not examined here, as this has already been tested in [9].

The system’s ability to decode brain signals was tested
with human EEG. An able-bodied male subject (20 yo)
underwent EEG placement over electrodes Oz, O1, O2, and
POz (referenced to AFz) according to the 10-20 international

TABLE I
THE SINE WAVE TEST WAS CONDUCTED AT 4000 HZ SAMPLE RATE

(1000 HZ PER CHANNEL) WITH A 100 MVPP TEST SIGNAL.

Freq. Meas. dt Crosstalk THD BCI online
(Hz) freq. (Hz) (µs) spec. (dB) (%) accuracy (%)

13 13.6 987±37.7 -65.7 1.19 100
113 113.3 1001±106 -68.0 0.41 100
223 222.7 1000±3.85 -67.6 0.27 100

Freq. = Test frequency. Meas. freq. = Measured frequency as shown in
PSD. dt = time between samples (ideal dt = 1000 µs). Crosstalk spec.
= PSD(f, ch1) - PSD(f, chi) at the worst case. THD = total harmonic
distortion.

standard. Training EEG was acquired by the system at 250
Hz/channel using the procedure described above. The subject
was instructed to alternate between eyes open (state A) and
eyes closed (state B).

Similar to the function generator test procedure, the online
mode involved the subject alternating between 20-s periods
of eyes open and 20-s periods of eyes closed conditions for a
total of 200 s. The BCI system decoded the underlying EEG
signals into either states and the performance was assessed
as the percentage of correctly decoded samples.

III. RESULTS

The BCI software occupied 101 kB (101 thousand bytes),
and 180 kB was allocated to heap, where runtime variables
were stored. The internal RAM capacity totaled 327 kB,
which allows the remaining 46 kB to be used for future
expansion of the BCI without the need for external RAM.

A. Function Generator Test

The system was tested with sine waves at 13 Hz, 113
Hz, and 223 Hz to assess signal acquisition fidelity, and the
results are summarized in Table I. Representative time and
PSD plots are shown in Figs. 4 and 5, respectively. Since the
crosstalk specification was below -65 dB for the 3 grounded
channels, the mux encoding was deemed to be correct.

The ADC overhead was 59 µs. The processing time
overheads relative to each 2-s long data sample were as
follows: 0.24% demux, 0.16% FFT, 14.5% PSD, and 1.23%
binning. For instance, PSD calculations took 290 ms to
process 2-s long data. The SD card writing significantly
impacted the other DSP functions, since it caused 70–75 ms
gaps in the recorded signals. Thus, this feature was disabled
during the human EEG testing.

B. Human EEG Test

After calibration, the state transition thresholds were found
to be TA=0.0125 and TB=0.99, which indicated a high
level of separability between the EEG underlying the eyes
open and closed states. Ideally TA and TB should be 0
and 1, respectively. During the online BCI test, the mean
of P (B|f ∈ A) was 0.00582±0.0297, while the mean of
P (B|f ∈ B) was 0.910±0.229. Note that the state machine
eliminated false transitions from state B to A. This resulted in
an overall online BCI decoding accuracy of 100%, indicating
that over 200-s period, there were 100 correct decisions.



Fig. 4. Time domain plots. The sine wave (223 Hz) was only sent to
Channel 1.

Fig. 5. Welch power spectrum for the sine wave test at 223 Hz on
Channel 1. Note that the DC bias was removed first.

IV. DISCUSSION AND CONCLUSIONS

The current study demonstrates that it is possible to
execute critical BCI functions, including EEG acquisition,
processing, and decoding using a custom amplifier array,
mux, and a commercial ULP DSP. Despite the limited
computing resources available on the DSP, this BCI system
is still capable of high fidelity recording and highly accurate
decoding of brain signals. Furthermore, the capabilities and
performances are similar to those running on full-sized
computers with larger number of brain signal channels [10].

With the current configurations, the ULP DSP was es-
timated to consume up to 100 mW at full load and <10
mW during idle [11]. Based on preliminary simulations, the
maximum power dissipation from a chest wall implant was
within physiological tolerance. Also, a 1000-mAh battery can
power the system for ∼14 h at full power or >100 h at idle
power. Based on [12], a user is expected to operate the BCI at
full power for 26.7% of a 24-h period, bringing the average

power consumption to 34 mW (∼38 h on one charge).
Future work will involve integrating the DSP with our pre-

viously developed 64-channel amplifier array and mux [13]
and a more efficient, custom-made ADC. The custom ADC
should be able to circumvent the internal ADC overhead to
allow high-γ band acquisition on all 64 channels. Ultimately,
this setup will be tested in a population of subjects with
ECoG electrode implants. However, the utilization of 64
channels will most likely exceed the memory capacity of
the DSP. Hence, more efficient implementations of the BCI
algorithm, e.g. using streaming PCA [14], will be necessary.
Also, various optimization procedures can further improve
the efficiency of the BCI algorithm to reduce the power
consumption and extend the battery life.

Finally, all necessary components will need to be imple-
mented into a dedicated printed circuit board (PCB) for the
CWU implant. Currently, it is estimated that these critical
components will occupy ∼5×6 cm2. This PCB area is
similar to that of a commercial deep-brain stimulator CWU.
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